Abstract

The multiphase flow through unsaturated porous media and accurate estimation of relative permeability are significant for oil and gas reservoir, grounder water resource and chemical engineering, etc. A new fractal model is developed for the multiphase flow through unsaturated porous media, where multiscale pore structure is characterized by fractal scaling law and the trapped water in the pores is taken into account. And the analytical expression for relative permeability is derived accordingly. The relationships between the relative permeability and capillary head as well as saturation are determined. The proposed model is validated by comparison with 14 sets of experimental data, which indicates that the fractal model agrees well with experimental data. It has been found that the proposed fractal model shows evident advantages compared with BC-B model and VG-M model, especially for the porous media with fine content and texture. Further calculations show that water permeability decreases as the fractal dimension increases under fixed saturation because the cumulative volume fraction of small pores increases with the increment of the fractal dimension. The present fractal model for the relative permeability may be helpful to understand the multiphase flow through unsaturated porous media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.