Abstract

A new dynamic control architecture based on reinforcement learning (RL) has been developed and applied to the problem of high-speed road following of high-curvature roads. Through RL, the control system indirectly learns the vehicle-road interaction dynamics, knowledge which is essential to stay on the road in high-speed road tracking. First, computer simulation has been carried out in order to test stability and performance of the proposed RL controller before actual use. The proposed controller exhibited a good road tracking performance, especially on high-curvature roads. Then, the actual autonomous driving experiments successfully verified the control performance on campus roads in which there were shadows from the trees, noisy and/or broken lane markings, different road curvatures, and also different times of the day reflecting a range of lighting conditions. The proposed three-stage image processing algorithm and the use of all six strips of edges have been capable of handling most of the uncertainties arising from the nonideal road conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.