Abstract

In this paper, the recursive approach of the Tau method is developed for numerical solution of Abel–Volterra type integral equations. Due to the singular behavior of solutions of these equations, the existing spectral approaches suffer from low accuracy. To overcome this drawback we use Muntz–Legendre polynomials as basis functions which have remarkable approximation to functions with singular behavior at origin and express Tau approximation of the exact solution based on a sequence of basis canonical polynomials that is generated by a simple recursive formula. We also provide a convergence analysis for the proposed method and obtain an exponential rate of convergence regardless of singularity behavior of the exact solution. Some examples are given to demonstrate the effectiveness of the proposed method. The results are compared with those obtained by existing numerical methods, thereby confirming the superiority of our scheme. The paper is closed by providing application of this method to approximate solution of a linear fractional integro-differential equation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call