Abstract

Abstract. We present a method that aligns lunar south and north pole LOLA DTMs using selected LOLA tracks and co-registration techniques. The selected LOLA tracks were then co-registered to the aligned polar DTMs with the aim to create a new LOLA frame of high relative accuracy. At the poles the relative accuracy of the resulting LOLA frame improved in comparison with the original LOLA frame, especially at the north pole. At lower latitudes on the lunar near side we could show that we achieve smaller residuals between our LOLA frame and a photogrammetrically derived reference DTM than with the original LOLA frame. On the far side we could not achieve better results which we believe is stemming from the generally less accurate orbit knowledge there. From the aligned polar DTMs we were able to derive a polar radius of 1738,049 km.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.