Abstract

A novel neural architecture for prediction in industrial control: the 'Double Recurrent Radial Basis Function network' (R2RBF) is introduced for dynamic monitoring and prognosis of industrial processes. Three applications of the R2RBF network on the prediction values confirmed that the proposed architecture minimizes the prediction error. The proposed R2RBF is excited by the recurrence of the output looped neurons on the input layer which produces a dynamic memory on both the input and output layers. Given the learning complexity of neural networks with the use of the back-propagation training method, a simple architecture is proposed consisting of two simple Recurrent Radial Basis Function networks (RRBF). Each RRBF only has the input layer with looped neurons using the sigmoid activation function. The output of the first RRBF also presents an additional input for the second RRBF. An unsupervised learning algorithm is proposed to determine the parameters of the Radial Basis Function (RBF) nodes. The K-means unsupervised learning algorithm used for the hidden layer is enhanced by the initialization of these input parameters by the output parameters of the RCE algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.