Abstract

ABSTRACTA new semiconducting polymer based on two different electron deficient (quinoxaline and isoindigo) and electron rich (benzodithiophene) moieties is synthesized, characterized and used as donor material for photovoltaic devices. Blade‐coated bulk heterojunction solar cells are fabricated in air by using chlorinated (o‐dichlorobenzene) and nonchlorinated (o‐xylene) solvents for the deposition of the active layer. The use of o‐xylene allows a ∼10% improvement of the device efficiency in comparison to the analogous system processed from o‐dichlorobenzene. In addition, the evolution of the photovoltaic parameters of the resulting devices during thermal stress is monitored and compared, demonstrating a nearly identical resistance against temperature. The reported results not only highlight the promising properties of the new polymer in terms of environmental stability and compatibility with nonhalogenated solvents, but also show an easy and ecofriendly way to further improve the device performance without altering the corresponding thermal stability. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 234–242

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call