Abstract

We introduce a new semirelativistic quantum operator for the length of the worldline a particle traces out as it moves. In this article the operator is constructed in a heuristic way and some of its elementary properties are explored. The operator ends up depending in a very complicated way on the potential of the system it is to act on so as a proof of concept we use it to analyze the expected distance traveled by a free Gaussian wave packet with some initial momentum. It is shown in this case that the distance such a particle travels becomes light-like as its mass vanishes and agrees with the classical result for macroscopic masses. This preliminary result has minor implications for the Weak Equivalence Principle (WEP) in quantum mechanics. In particular it shows that the logical relationship between two formulations of the WEP in classical mechanics extends to quantum mechanics. That our result is qualitatively consistent with the work of others emboldens us to start the task of evaluating the new operator in nonzero potentials. However, we readily acknowledge that the looseness in the definition of our operator means that all of our so-called results are highly speculative. Plans for future work with the new operator are discussed in the last section.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.