Abstract

BackgroundThe accurate assessment of distal radioulnar joint (DRUJ) instability is still challenging as there is no established objective evaluation method. This study aimed to develop a noninvasive measurement method using a three-dimensional electromagnetic sensor system (EMS) to quantitatively assess and characterize the normal DRUJ movement in healthy volunteers.MethodsThe DRUJ movement was mimicked using both a block model and saw bone. Movement of the models was measured by EMS, and the accuracy and reproducibility of the measurements were assessed. In vivo measurement was performed in a sitting position with the elbow flexed and the forearm pronated. One sensor each was attached to the distal radial shaft and the ulnar head. The examiners fixed the distal radius and the carpal bones, moved the ulnar head from the dorsal to the volar side and measured the dorsovolar translation. The volar translation was measured by EMS and ultrasonography, and the correlation coefficient was calculated. The dorsovolar translation was evaluated in 14 healthy volunteers (7 men and 7 women) by three hand surgeons. The intraclass and inter-rater correlation coefficients (ICCs), the differences between the dominant and non-dominant sides and between men and women were assessed.ResultsThe accuracy and reproducibility assessment results of the EMS showed high accuracy and reproducibility. In the comparison between EMS and ultrasonography, the correlation coefficient was 0.920 (p = 0.16 × 10-3). The ICC (1,5) for the intra-rater reliability was 0.856, and the ICC (2,5) for inter-rater reliability was 0.868. The mean ulnar head translation and difference between dominant and non-dominant sides were 6.00 ± 1.16 mm (mean ± SD) and − 0.12 ± 0.40 mm, respectively. There were no significant differences between any of the parameters.ConclusionsA new measurement method using EMS could evaluate DRUJ movement with high accuracy, reproducibility, and intra- and inter-rater reliability. In healthy volunteers, the dorsovolar ulnar head translation was 6.00 mm. The difference between the dominant and non-dominant sides was < 1.0 mm with no significant difference. EMS provided an objective, non-invasive, real-time assessment of dynamic changes in the DRUJ. These findings could be useful in the treatment of patients with DRUJ instability.

Highlights

  • The accurate assessment of distal radioulnar joint (DRUJ) instability is still challenging as there is no established objective evaluation method

  • Some reports suggest that the ballottement test is the most reliable [8]; these manual tests depend on subjective evaluations

  • When five examiners moved the ulnar head by 10 mm, the mean ulnar head translation was 10.08 ± 0.17 mm

Read more

Summary

Introduction

The accurate assessment of distal radioulnar joint (DRUJ) instability is still challenging as there is no established objective evaluation method. This study aimed to develop a noninvasive measurement method using a three-dimensional electromagnetic sensor system (EMS) to quantitatively assess and characterize the normal DRUJ movement in healthy volunteers. A knee motion quantitative assessment method with high reproducibility using a threedimensional electromagnetic sensor system (EMS) was reported [9,10,11,12,13,14,15,16] This system can quantitatively evaluate knee laxity after anterior cruciate ligament (ACL) injury with a high sampling rate during the Lachman test and the pivot shift test, which have been used as manual examination methods for detecting ACL deficiency [9,10,11,12,13,14,15,16]. The purpose of this study was to develop a new objective evaluation method for DRUJ instability using EMS, and to quantitatively evaluate DRUJ movements in healthy volunteers

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.