Abstract
Regularization regression techniques are widely used to overcome a model’s parameter estimation problem in the presence of multicollinearity. Several biased techniques are available in the literature, including ridge, Least Angle Shrinkage Selection Operator (LASSO), and elastic net. In this work, we study the performance of the classical LASSO, adaptive LASSO, and ordinary least squares (OLS) methods in high-multicollinearity scenarios and propose some new estimators for estimating the LASSO parameter “k”. The performance of the proposed estimators is evaluated using extensive Monte Carlo simulations and real-life examples. Based on the mean square error criterion, the results suggest that the proposed estimators outperformed the existing estimators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.