Abstract

A new quality assessment criterion for evaluating the performance of the nonlinear dimensionality reduction (NLDR) methods is proposed in this paper. Differing from the current quality assessment criteria focusing on the local-neighborhood-preserving performance of the NLDR methods, the proposed criterion capitalizes on a new aspect, the global-structure-holding performance, of the NLDR methods. By taking both properties into consideration, the intrinsic capability of the NLDR methods can be more faithfully reflected, and hence more rational measurement for the proper selection of NLDR methods in real-life applications can be offered. The theoretical argument is supported by experiment results implemented on a series of benchmark data sets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.