Abstract

A new and interesting Pt/oxide/In/sub 0.49/Ga/sub 0.51/P metal-oxide-semiconductor (MOS) Schottky diode hydrogen sensor has been fabricated and studied. The steady-state and transient responses with different hydrogen concentrations and at different temperatures are measured. The presence of dipoles at the oxide layer leads to an extra electrical field and the variation of Schottky barrier height. Even at room temperature, a very high hydrogen detection sensitivity of 561% is obtained when a 9090 ppm H/sub 2//air gas is introduced. In addition, an absorption response time less than 1 s under the applied voltage of 0.7 V and 9090 ppm H/sub 2//air hydrogen ambient is found. The roles of hydrogen adsorption and desorption for the transient response at different temperatures are also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call