Abstract
The Hales-Jewett theorem asserts that for every r and every k there exists n such that every r-colouring of the n-dimensional grid {1, . . . , k} contains a monochromatic combinatorial line. This result is a generalization of van der Waerden’s theorem, and it is one of the fundamental results of Ramsey theory. The theorem of van der Waerden has a famous density version, conjectured by Erdős and Turan in 1936, proved by Szemeredi in 1975, and given a different proof by Furstenberg in 1977. The Hales-Jewett theorem has a density version as well, proved by Furstenberg and Katznelson in 1991 by means of a significant extension of the ergodic techniques that had been pioneered by Furstenberg in his proof of Szemeredi’s theorem. In this paper, we give the first elementary proof of the theorem of Furstenberg and Katznelson and the first to provide a quantitative bound on how large n needs to be. In particular, we show that a subset of {1, 2, 3} of density δ contains a combinatorial line if n is at least as big as a tower of 2s of height O(1/δ). Our proof is surprisingly simple: indeed, it gives arguably the simplest known proof of Szemeredi’s theorem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.