Abstract

In [10, §0, E), 5)] Shelah states using the proofs of 7.9 and 6.9 in [9] it is possible to prove that if a countable first-order theory T is ℵ0-stable (totally transcendental) and not ℵ1-categorical, then it has at least ∣1 + α∣ models of power ℵα.In this note we will give a new proof of this theorem using the work of Baldwin and Lachlan [1]. Our original proof used the generalized continuum hypothesis (GCH). We are indebted to G. E. Sacks for suggesting that the notions of ℵ0-stability and ℵ1-categoricity are absolute, and that consequently our use of GCH was eliminable [8]. Routine results from model theory may be found, e.g. in [2].Proof (with GCH). In the proof of Theorem 3 of [1] Baldwin and Lachlin show of power ℵα such that there is a countable definable subset in . Let B0 be such a subset. Say . We will give by transfinite induction an elementary chain of models of T of power ℵα such that B[i1 … in] has power ℵβ and such that every infinite definable subset of has power ≥ℵβ. This clearly suffices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.