Abstract
Computational Fluid Dynamics codes usually adopt velocity-pressure splitting to reduce the computational effort in the solution of the Navier-Stokes equations. In standard projection methods, the finite element approximations show difficulties to find a solution with discrete free-divergence velocity field in all space points. In this work, a new velocity-pressure method for Navier-Stokes equations that projects the velocity field inside the discrete free-divergence velocity space is presented. This algorithm computes the velocity field on the discrete free-divergence space by using Raviart-Thomas finite elements. The projection is obtained by the minimization of the distance, over the discrete free-divergence space, between the auxiliary field and the desired Raviart-Thomas interpolation space. The Raviart-Thomas discretization is based on the quadrilateral and hexahedral finite element space and therefore the divergence mimetic computational approach is used to avoid the well-known degradation of the divergence term convergence. The auxiliary velocity field is obtained by solving the velocity-pressure split system used in the classical Chorin­Temam algorithm. The pressure is recovered by the orthogonal space to the projection on the Raviart-Thomas interpolation space. The method is investigated with an explicit and semi-implicit treatment of the pressure terms. The issues on boundary conditions and the errors in the reproducibility of the tangential components are investigated. Several numerical examples are reported to support this new projection method.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.