Abstract

To reduce the pollution resulting from discarding waste plastic film and burning straw, a new method of preparing straw-reinforced LLDPE composites was developed to utilize these wastes. The straws were first laid parallel on an LLDPE film and then rolled up. The rolls containing long straws were laid into a mat and then hot-pressed into a long straw composite board (the mass of straw accounted for 60%). Slope-cutting the straw, grinding the straw, and twisting the roll were designed to improve the physical and mechanical properties of long straw composites. Among them, slope-cutting the straw combined with twisting the roll provided the best properties. Compared to the extruded straw particle composite, the composite prepared with the new method improved the tensile strength, bending strength, impact strength, and water resistance by 358%, 151%, 416%, and 81%, respectively. Slope-cutting exposed more inner surface at the end of the straw. Scanning electron microscope observations showed that the straw inner surface was more tightly bonded with the LLDPE matrix than the outer surface. Meanwhile, the integrity of the straw was retained as much as possible, and thus greatly improved the performance of the resulting composites. Dynamic mechanical analysis, differential scanning calorimetry, and thermogravimetric analysis show that the viscous deformation of the composites prepared by the new method was reduced and the rigidity was increased, and the combination of straw and LLDPE forms a dense composite material with good interfacial bonding. It greatly slowed down the degree of its pyrolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call