Abstract

We investigated the synthesis of maleic anhydride by oxidehydration of a bio-alcohol, 1-butanol, as a possible alternative to the classical process of n-butane oxidation. A vanadyl pyrophosphate catalyst was used to explore the one-pot reaction, which involved two sequential steps: 1) 1-butanol dehydration to 1-butene, catalysed by acid sites, and 2) the oxidation of butenes to maleic anhydride, catalysed by redox sites. A non-negligible amount of phthalic anhydride was also formed. The effect of different experimental parameters was investigated with chemically sourced 1-butanol, and the results were then confirmed by using genuinely bio-sourced 1-butanol. In the case of bio-1-butanol, however, the purity of the product remarkably affected the yield of maleic anhydride. It was found that the reaction mechanism includes the oxidation of butenes to crotonaldehyde and the oxidation of the latter to either furan or maleic acid, both of which are transformed to produce maleic anhydride.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.