Abstract

PurposeAssessing the clinical importance of an exposure effect on a quality of life (QoL) score often requires quantifying the effect in terms of a difference in scores. Using the linear regression model (LRM) for this purpose assumes the ordinal score is a proxy for an underlying continuous variable, but the analysis offers no assessment for the validity of the assumption. We propose an approach that assesses the proxy assumption and estimates the exposure effect by using the cumulative link model (CLM).Patients and methodsCLM is a well-established regression model that assumes an ordinal score is an ordered category generated from applying thresholds to a latent continuous variable. Our approach assesses the proxy assumption by testing whether these thresholds are equidistant. We compared the performance of CLM and LRM using simulated ordinal data and illustrated their application to the effect of time since diagnosis on five subscales of fatigue among breast cancer survivors measured using the Multidimensional Fatigue Inventory.ResultsCLM had good performance in estimating the difference in means with simulated ordinal data satisfying the proxy assumption, even when the outcome had only a few categories. When the proxy assumption was inadequate, both the CLM and LRM had biased estimates with poor coverage. The proxy assumption was appropriate for four of the five subscales in our real data application to fatigue scores, which highlighted the importance of assessing the proxy assumption to avoid reporting invalid estimates in terms of the difference in scores.ConclusionThe proxy assumption is critical to the interpretation of the exposure effect on the difference in mean QoL scores. CLM offers a valid test for the presence of an association, a method for assessing the proxy assumption, and when the assumption is adequate, an assessment for clinical significance using the difference in means.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.