Abstract
Upon the motivation of unstable climatic conditions of the world like excess of rains, drought and huge floods, we introduce a versatile hydrologic probability model with two scale parameters. The proposed model contains Lindley and exponentiated exponential (Lindley in J R Stat Soc Ser B 20:102–107, 1958; Gupta and Kundu in Biom J 43(1):117–130, 2001) distributions as special cases. Various properties of the distribution are obtained, such as shapes of the density and hazard functions, moments, mean deviation, information-generating function, conditional moments, Shannon entropy, L-moments, order statistics, information matrix and characterization via hazard function. Parameters are estimated via maximum likelihood estimation method. A simulation scheme is provided for generating the random data from the proposed distribution. Four data sets are used for comparing the proposed model with a set of well-known hydrologic models, such as generalized Pareto, log normal (3), log Pearson type III, Kappa(3), Gumbel, generalized logistic and generalized Lindley distributions, using some goodness-of-fit tests. These comparisons render the proposed model suitable and representative for hydrologic data sets with least loss of information attitude and a realistic return period, which render it as an appropriate alternate of the existing hydrologic models. Supplementary materials for this paper are available online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Agricultural, Biological and Environmental Statistics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.