Abstract
The classical probabilistic models attempt to capture the Ad hoc information retrieval problem within a rigorous probabilistic framework. It has long been recognized that the primary obstacle to effective performance of the probabilistic models is the need to estimate a relevance model. The Dirichlet compound multinomial (DCM) distribution, which relies on hierarchical Bayesian modeling techniques, or the Polya Urn scheme, is a more appropriate generative model than the traditional multinomial distribution for text documents. We explore a new probabilistic model based on the DCM distribution, which enables efficient retrieval and accurate ranking. Because the DCM distribution captures the dependency of repetitive word occurrences, the new probabilistic model is able to model the concavity of the score function more effectively. To avoid the empirical tuning of retrieval parameters, we design several parameter estimation algorithms to automatically set model parameters. Additionally, we propose a pseudo-relevance feedback algorithm based on the latent mixture modeling of the Dirichlet compound multinomial distribution to further improve retrieval accuracy. Finally, our experiments show that both the baseline probabilistic retrieval algorithm based on the DCM distribution and the corresponding pseudo-relevance feedback algorithm outperform the existing language modeling systems on several TREC retrieval tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.