Abstract

Graph-cuts based move making algorithms have been intensively studied. Previous methods uniformly rely on max-flow/min-cut solutions for move-making, and have achieved generally good performance on a variety of applications. Early research suggests that path-augmenting algorithms such as BK tend to perform well on grid-structured graphs. Unlike conventional graph-cuts methods, our algorithm does not require the exact max-flow/min-cut solution for update. Instead, any cut/flow of a subproblem can be used for primal/dual update, which allows the max-flow solver to stop at any time during execution. Thanks to the dynamicity of our approach, the energy convergence rate can be improved by several times in our experiments on GPU.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.