Abstract

In this paper, a new predictive approach is proposed for the impedance control of bilateral drive-by-wire teleoperation systems. The proposed control structure includes two mirror predictors/observers in both the master and slave sides. These predictors/observers are used to simultaneously estimate the master and slave internal dynamics, and thereby to avoid the use of the delayed transmitted information. As a consequence, the influence of the delay on the whole system can be minimized and the performance can be improved. Under a set of suited hypotheses, the proposed control structure is shown to be uniformly ultimate stable, even in the presence of time-varying delays. Simulation results are presented to show the effectiveness of the proposed approach. The behavior of the control structure is also experimentally demonstrated while performing remote steering of a small autonomous vehicle

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.