Abstract

Abstract. In this study, we take a closer look at the important issue of μ–Λ relationships in raindrop size distributions (DSDs) by conducting a systematic analysis of 20 months of data collected by disdrometers in the Netherlands. A new power-law model for representing μ–Λ relationships based on the double normalization framework is proposed and used to derive separate μ–Λ relationships for stratiform and convective rain events. The sensitivity of the obtained relationships to measurement uncertainty is studied by applying two different quality control filters based on the mass-weighted mean drop diameter (Dm) and liquid water content (LWC). Our results show that there are significant differences in μ–Λ relationships between convective and stratiform rainfall types. However, the retrieved relationships appear to be quite robust to measurement noise and there is good agreement with other reference relations for similar climatological conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.