Abstract

AbstractLatent and sensible heat flux observations are essential for understanding land–atmosphere interactions. Measurements from the eddy covariance technique are widely used but suffer from systematic energy imbalance problems, partly due to missing large eddies from sub‐mesoscale transport. Because available energy drives the development of large eddies, we propose an available energy based correction method for turbulent flux measurements. We apply our method to 172 flux tower sites and show that we can reduce the energy imbalance from −14.99 to −0.65 W m−2 on average, together with improved consistency between turbulent fluxes and available energy and associated increases in r2 at individual sites and across networks. Our results suggest that our method is conceptually and empirically preferable over the method implemented in the ONEFlux processing. This can contribute to the efforts in understanding and addressing the energy imbalance issue, which is crucial for the evaluation and calibration of land surface models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.