Abstract

Extreme ultraviolet (EUV) observations are widely used in solar activity research and space weather forecasting since they can observe both the solar eruptions and the source regions of the solar wind. Flat field processing is indispensable to remove the instrumental non-uniformity of a solar EUV imager in producing high-quality scientific data from original observed data. FengYun-3E (FY-3E) is a meteorological satellite operated in a Sun-synchronous orbit, and the routine EUV imaging data from the Solar X-ray and Extreme Ultraviolet Imager (X-EUVI) onboard FY-3E has the characteristic of concentric rotation. Taking advantage of the concentric rotation, we propose a post-hoc flat field measurement method for its EUV 195 Å channel in this paper. This method removes the small-scale and time-varying component of coronal activities by taking the median value for each pixel along the time axis of a concentric rotation data cube, and then derives the large-scale and invariable component of the quiet coronal radiation, and finally generates a flat field image. The flat field can be generated with cadences from hundreds of minutes (one orbit) to several days. Higher flat field accuracy can be achieved by employing more data. Further analysis shows that our method is able to measure the instrumental spot-like non-uniformity possibly caused by contamination on the detector, which mostly disappears after the in-orbit self-cleaning process. It can also measure the quasi-periodic grid-like non-uniformity, possibly from the obscuration of the support mesh on the rear filter. After flat field correction, these instrumental non-uniformities from the original data are effectively removed. Moreover, the X-EUVI 195 Å data after dark and flat field corrections are consistent with the 193 Å imaging data from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory, verifying the suitability of the method. The post-hoc method does not occupy observation time, which is advantageous for space weather operations. Our method is not only suitable for FY-3E/X-EUVI but also a candidate method for the flat field measurement of future solar EUV telescopes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.