Abstract

Viscosity is a fundamental physical property of lava that dictates style and rate of effusive transport. Studies of lava viscosity have predominantly focused on measuring re-melted rocks in the laboratory. While these measurements are well-constrained in temperature, shear rate, and oxygen fugacity, they cannot reproduce the complexities of the natural emplacement environment. Field viscosity measurements of active lava are the only way to fully capture lava's properties, but such measurements are scarce, largely due to a lack of easy-to-use, portable, and accurate measurement devices. Thus, there is a need for developing suitable field instruments to help bolster the understanding of lava. Here, we present a new penetrometer capable of measuring a material's viscosity under the harsh conditions of natural lava emplacement. This device uses a stainless-steel tube with a semi-spherical tip fixed to a load cell that records axial force when pushed into a material, while simultaneously measuring the penetration depth via a free-moving tube that is pushed backward along the penetration tube. The device is portable (1.5m long, 5.5kg in weight) and uses a single-board computer for data acquisition. The penetrometer has an operational range from 2.5 × 102 to 2.1 × 105Pas and was calibrated for viscosities ranging from 5.0 × 102 to 1.6 × 105Pas. It was deployed to the 2023 Litli-Hrútur eruption in Iceland. These field measurements successfully recorded the in situ viscosities of the lava in the range of 1.2 × 104-3.4 × 104Pas, showcasing it as an efficient method of measuring natural lava viscosity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.