Abstract

ABSTRACT We present a new metric that uses the spectral curvature (SC) above 10 keV to identify Compton-thick active galactic nuclei (AGNs) in low-quality Swift/Burst Alert Telescope (BAT) X-ray data. Using NuSTAR, we observe nine high SC-selected AGNs. We find that high-sensitivity spectra show that the majority are Compton-thick (78% or 7/9) and the remaining two are nearly Compton-thick (N H ≃ (5–8) × 1023 cm−2 ). We find that the SC BAT and SC NuSTAR measurements are consistent, suggesting that this technique can be applied to future telescopes. We tested the SC method on well-known Compton-thick AGNs and found that it is much more effective than broadband ratios (e.g., 100% using SC versus 20% using 8–24 keV/3–8 keV). Our results suggest that using the >10 keV emission may be the only way to identify this population since only two sources show Compton-thick levels of excess in the Balmer decrement corrected [O iii] to observed X-ray emission ratio ( ) and WISE colors do not identify most of them as AGNs. Based on this small sample, we find that a higher fraction of these AGNs are in the final merger stage (<10 kpc) than typical BAT AGNs. Additionally, these nine obscured AGNs have, on average, ≈4× higher accretion rates than other BAT-detected AGNs ( compared to ). The robustness of SC at identifying Compton-thick AGNs implies that a higher fraction of nearby AGNs may be Compton-thick (≈22%) and the sum of black hole growth in Compton-thick AGNs (Eddington ratio times population percentage) is nearly as large as mildly obscured and unobscured AGNs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call