Abstract

A new physics-based expression is presented for determining a buried object’s location, orientation and magnetic polarizibility. The approach assumes the target exhibits a dipolar response and requires only three global values: a magnetic field vector H, a vector potential A and a scalar magnetic potential ψ, all at a single location in space. Among these values, only the scattered magnetic field, H, is measurable with current electromagnetic induction sensors. Therefore, in order to estimate the scattered magnetic scalar and vector potentials from data, a numerical technique called the normalized surface magnetic source (NSMS) method is employed. Originally, in the NSMS model, the scattered magnetic field outside the object is reproduced mathematically by equivalent magnetic charges distributed on a three-dimensional (3-D) closed surface. Here, a two-dimensional (2-D) implementation of the NSMS that uses elementary magnetic dipoles, instead of magnetic charges distributed on a planar surface placed under...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.