Abstract
The problem of dynamic coupling between a rectangular container undergoing planar pendular oscillations and its interior potential fluid sloshing is studied. The Neumann boundary-value problem for the fluid motion inside the container is deduced from the Bateman–Luke variational principle. The governing integro-differential equation for the motion of the suspended container, from a single rigid pivoting rod, is the Euler–Lagrange equation for a forced pendulum. The fluid and rigid-body partial differential equations are linearised, and the characteristic equation for the natural and resonant frequencies of the coupled dynamical system are presented. It is found that internal 1:1 resonances exist for an experimentally realistic setup, which has important physical implications. In addition, a new instability is found in the linearised coupled problem whereby instability occurs when the rod length is shorter than a critical length, and an explicit formula is given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.