Abstract

We present a study of the luminosity density distribution of the Galactic bar using number counts of red clump giants (RCGs) from the OGLE-III survey. The data were recently published by Nataf et al. (2013) for 9019 fields towards the bulge and have $2.94\times 10^6$ RC stars over a viewing area of $90.25 \,\textrm{deg}^2$. The data include the number counts, mean distance modulus ($\mu$), dispersion in $\mu$ and full error matrix, from which we fit the data with several tri-axial parametric models. We use the Markov Chain Monte Carlo (MCMC) method to explore the parameter space and find that the best-fit model is the $E_3$ model, with the distance to the GC is 8.13 kpc, the ratio of semi-major and semi-minor bar axis scale lengths in the Galactic plane $x_{0},y_{0}$, and vertical bar scale length $z_0$, is $x_0:y_0:z_0 \approx 1.00:0.43:0.40$ (close to being prolate). The scale length of the stellar density profile along the bar's major axis is $\sim$ 0.67 kpc and has an angle of $29.4^\circ$, slightly larger than the value obtained from a similar study based on OGLE-II data. The number of estimated RC stars within the field of view is $2.78 \times 10^6$, which is systematically lower than the observed value. We subtract the smooth parametric model from the observed counts and find that the residuals are consistent with the presence of an X-shaped structure in the Galactic centre, the excess to the estimated mass content is $\sim 5.8%$. We estimate the total mass of the bar is $\sim 1.8 \times 10^{10} M_\odot$. Our results can be used as a key ingredient to construct new density models of the Milky Way and will have implications on the predictions of the optical depth to gravitational microlensing and the patterns of hydrodynamical gas flow in the Milky Way.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.