Abstract

A new pH oscillator has been discovered involving the system of NaClO2, Na2SO3, and H2SO4 in a continuous-flow stirred tank reactor (CSTR). While ClO2- serves as an oxidant in numerous systems exhibiting nonlinear dynamical behavior, this is the first reported chlorite-based pH oscillator. Large-amplitude oscillations in pH and potential of a platinum electrode were observed over a rather narrow concentration range. Complex dynamical behavior also was observed, including aperiodic oscillations, bistability between steady states, bistability between steady state and oscillatory state, bursting, a possible third steady state, and damped oscillations in batch. Autocatalytic oxidation of HSO3- by ClO2- is a major source of positive feedback in H+. A fast Cl+-transfer reaction between HOCl and SO32- is an important source of negative feedback. Oscillations were also obtained in the presence of Na2CO3, with the dehydration reaction of H2CO3 providing additional negative feedback. Models are proposed to account ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.