Abstract

Null linear discriminant analysis (LDA) method is a popular dimensionality reduction method for solving small sample size problem. The implementation of null LDA method is, however, computationally very expensive. In this paper, we theoretically derive the null LDA method from a different perspective and present a computationally efficient implementation of this method. Eigenvalue decomposition (EVD) of ST^+SB (where SB is the between-class scatter matrix and ST^+ is the pseudoinverse of the total scatter matrix ST) is shown here to be a sufficient condition for the null LDA method. As EVD of ST^+SBis computationally expensive, we show that the utilization of random matrix together with ST^+SB is also a sufficient condition for null LDA method. This condition is used here to derive a computationally fast implementation of the null LDA method. We show that the computational complexity of the proposed implementation is significantly lower than the other implementations of the null LDA method reported in the literature. This result is also confirmed by conducting classification experiments on several datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.