Abstract

Traffic flow prediction provides support for travel management, vehicle scheduling, and intelligent transportation system construction. In this work, a graph space–time network (GSTNCNI), incorporating complex network feature information, is proposed to predict future highway traffic flow time series. Firstly, a traffic complex network model using traffic big data is established, the topological features of traffic road networks are then analyzed using complex network theory, and finally, the topological features are combined with graph neural networks to explore the roles played by the topological features of 97 traffic network nodes. Consequently, six complex network properties are discussed, namely, degree centrality, clustering coefficient, closeness centrality, betweenness centrality, point intensity, and shortest average path length. This study improves the graph convolutional neural network based on the above six complex network properties and proposes a graph spatial–temporal network consisting of a combination of several complex network properties. By comparison with existing baselines containing graph convolutional neural networks, it is verified that GSTNCNI possesses high traffic flow prediction accuracy and robustness. In addition, ablation experiments are conducted for six different complex network features to verify the effect of different complex network features on the model’s prediction accuracy. Experimental analysis indicates that the model with combined multiple complex network features has a higher prediction accuracy, and its performance is improved by 31.46% on average, compared with the model containing only one complex network feature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call