Abstract

The mesospheric molecular oxygen and hydroxyl airglow emissions have traditionally been measured in order to derive minor species abundances or to diagnose dynamical phenomena. We present a new interpretation of these airglow emissions and show them to be fundamental measures of energy deposition from which rates of atmospheric heating are readily derived. The heating rate due to absorption of ultraviolet radiation in the Hartley band of ozone may be derived from simultaneous measurements of the oxygen atmospheric band and infrared atmospheric band volume emission rates independent of knowledge of the ozone density, the solar irradiance, and the ozone absorption cross sections. The heating rates due to key exothermic reactions may be derived directly from appropriate airglow observations independent of the reactant concentrations and the temperature‐dependent reaction rates. The accuracy of heating rates derived directly from airglow measurements is also inherently higher than that obtained in standard approaches. We suggest that heating rates derived in this manner be treated as data products and that they be compared with numerical model computations to enhance understanding of atmospheric thermodynamics. An initial comparison of airglow‐derived energy deposition rates with deposition rates traditionally computed from numerical models shows agreement to within 20% for the Hartley band of ozone in the lower and upper mesosphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call