Abstract

Consider the problem of estimating the mean of a Gaussian random vector when the mean vector is assumed to be in a given convex set. The most natural solution is to take the Euclidean projection of the data vector on to this convex set; in other words, performing "least squares under a convex constraint." Many problems in modern statistics and statistical signal processing theory are special cases of this general situation. Examples include the lasso and other high-dimensional regression techniques, function estimation problems, matrix estimation and completion, shape-restricted regression, constrained denoising, linear inverse problems, etc. This paper presents three general results about this problem, namely, (a) an exact computation of the main term in the estimation error by relating it to expected maxima of Gaussian processes (existing results only give upper bounds), (b) a theorem showing that the least squares estimator is always admissible up to a universal constant in any problem of the above kind and (c) a counterexample showing that least squares estimator may not always be minimax rate-optimal. The result from part (a) is then used to compute the error of the least squares estimator in two examples of contemporary interest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.