Abstract

Many mammals seasonally reduce body fat due to inherent periods of fasting, which is associated with decreased leptin concentrations. However, no data exist on the correlation between fat mass (FM) and circulating leptin in marine mammals, which have evolved large fat stores as part of their adaptation to periods of prolonged fasting. Therefore, FM was estimated (by tritiated water dilution), and serum leptin and cortisol were measured in 40 northern elephant seal (Mirounga angustirostris) pups early (<1 wk postweaning) and late (6-8 wk postweaning) during their natural, postweaning fast. Body mass (BM) and FM were reduced late; however, percent FM (early: 43.9 +/- 0.5, late: 45.5 +/- 0.5%) and leptin [early: 2.9 +/- 0.1 ng/ml human equivalents (HE), late: 3.0 +/- 0.1 ng/ml HE] did not change. Cortisol increased between early (9.2 +/- 0.5 microg/dl) and late (16.3 +/- 0.9 microg/dl) periods and was significantly and negatively correlated with BM (r = 0.426; P < 0.0001) and FM (r = 0.328; P = 0.003). FM and percent FM were not correlated (P > 0.10) with leptin at either period. The present study suggests that these naturally obese mammals appear to possess a novel cascade for regulating body fat that includes cortisol. The lack of a correlation between leptin and FM may reflect the different functions of fat between terrestrial and marine mammals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.