Abstract

Tungsten inert gas welding (TIG) is more stable and allows for more precise control than most other arc welding processes. TIG welding is desired in the aerospace sector when thin parts have been welded with accuracy. However, when welding thick sections, autogenous TIG welding is not commonly recommended due to the limited depth of penetration required. It is in effective for joining the thick parts in a particular pass. Welding with activated flux tungsten inert gas (A-TIG) enhances weld penetration by four times in a single pass. This process will improve penetration depth, depth/width ratio and also, minimize angular distortion and residual stresses. A-TIG is the topic of investigation among researchers due to its deep penetration capacity. Properties of A-TIG welding in diverse materials was investigated in this study which also discusses the mechanisms, varied forces like lorentz force, buoyancy force, shear stress prompted by plasma jet, shear stress prompted by surface tension gradient, reverse marangoni force and aerodynamic drag force induced in the weld pool. The impact of activated fluxes on various materials of A-TIG weld was also investigated in this study. Recent advancements in TIG welding methods were also explored. According to the findings, A-TIG welding improves weld penetration significantly, but there is a lot of slug on the weld surface. This constraint can be addressed by using new versions of the A-TIG welding progression, such as flux bounded and the flux zone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.