Abstract

It is generally accepted that electron transfer in bacterial photosynthesis is driven by the first singlet excited state of a special pair of bacteriochlorophylls (P*). We have examined the first steps of electron transfer in a mutant of the Rhodobacter sphaeroides reaction center in which charge separation from P* is dramatically slowed down. The results provide for the first time clear evidence that excitation of the monomeric bacteriochlorophyll in the active branch of the reaction center (B(A)) drives ultrafast transmembrane electron transfer without the involvement of P*, demonstrating a new and efficient mechanism for solar energy transduction in photosynthesis. The most abundant charge-separated intermediate state probably is P+B(A)-, which is formed within 200 fs from B(A)* and decays with a lifetime of 6.5 ps into P+H(A)-. We also see evidence for the involvement of a B(A)+H(A)- state in the alternative pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.