Abstract

We report a new pathway to synthesize pyrano[2,3-c]pyrazoles and their binding mode to p38 MAP kinase. Pyrano[2,3-c]pyrazole derivatives have been prepared through a four-component reaction of benzyl alcohols, ethyl acetoacetate, phenylhydrazine, and malononitrile in the presence of sulfonated amorphous carbon and eosin Y as catalysts. All products were characterized by melting point, 1H and 13C NMR, and HRMS (ESI). The products were screened in silico for their binding activities to both the ATP-binding pocket and the lipid-binding pocket of p38 MAP kinase, using a structure-based flexible docking provided by the engine ADFR. The results showed that eight synthesized compounds had a higher affinity to the lipid pocket than to the other target site, which implied potential applications as allosteric inhibitors. Finally, the most biologically active compound, 5, had a binding affinity comparable to those of other proven lipid pocket inhibitors, with affinity to the target pocket reaching −10.9932 kcal/mol, and also had the best binding affinity to the ATP-binding pockets in all of our products. Thus, our research provides a novel pathway for synthesizing pyrano[2,3-c]pyrazoles and bioinformatic evidence for their biological capability to block p38 MAP kinase pockets, which could be useful for developing cancer or immune drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call