Abstract
In this paper a committee decision-making process of a convex Lagrange decomposable multi-objective optimization problem, which has been decomposed into various subproblems, is studied. Each member of the committee controls only one subproblem and attempts to select the optimal solution of this subproblem most desirable to him, under the assumption that all the constraints of the total problem are satisfied. This procedure leads to a new solution concept of a Lagrange decomposable multi-objective optimization problem, called a preferred equilibrium set. A preferred equilibrium point of a problem, for a committee, may or may not be a Pareto optimal point of this problem. In some cases, a non-Pareto optimal preferred equilibrium point of a problem, for a committee, can be considered as a special type of Pareto optimal point of this problem. This fact leads to a generalization of the Pareto optimality concept in a problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.