Abstract

Abstract A new parametric model of vortex tangential-wind profiles is presented that is primarily designed to depict realistic-looking tangential wind profiles such as those in intense atmospheric vortices arising in dust devils, waterspouts, tornadoes, mesocyclones, and tropical cyclones. The profile employs five key parameters: maximum tangential wind, radius of maximum tangential wind, and three power-law exponents that shape different portions of the velocity profile. In particular, a new parameter is included controlling the broadly or sharply peaked profile in the annular zone of tangential velocity maximum. Different combinations of varying the model parameters are considered to investigate and understand their effects on the physical behaviors of tangential wind and corresponding vertical vorticity profiles. Additionally, the parametric tangential velocity and vorticity profiles are favorably compared to those of an idealized Rankine model and also those of a theoretical stagnant core vortex model in which no tangential velocity exists within a core boundary and a potential flow occurs outside the core. Furthermore, the parametric profiles are evaluated against and compared to those of two other idealized vortex models (Burgers–Rott and Sullivan). The comparative profiles indicate very good agreements with low root-mean-square errors of a few tenths of a meter per second and high correlation coefficients of nearly one. Thus, the veracity of the parametric model is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call