Abstract
In this paper, we present a numerical approach to solving singularly perturbed semilinear convection-diffusion problems. The nonlinear part of the problem is linearized via the quasilinearization technique. We then design and implement a fitted operator finite difference method to solve the sequence of linear singularly perturbed problems that emerges from the quasilinearization process. We carry out a rigorous analysis to attest to the convergence of the proposed procedure and notice that the method is first-order uniformly convergent. Some numerical evaluations are implemented on model examples to confirm the proposed theoretical results and to show the efficiency of the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.