Abstract

Although various conjectures have been proposed to explain the abnormal increase in thermal conductivity of nanofluids, the detailed mechanism has not been fully understood and explained. The main reason is due to the lack of knowledge of the most fundamental factor governing the mechanisms such as Brownian motion, liquid layering, phonon transport, surface chemical effects, and agglomeration. Applying a surface complexation model for the measurement data of hydrodynamic size, zeta potential, and thermal conductivity, we have shown that surface charge states are mainly responsible for the increase in the present condition and may be the factor incorporating all the mechanisms as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.