Abstract
The Pansharpening process aims to merge the high spatial resolution of the panchromatic (Pan) image with the spectral information of the multispectral (MS) images. The fused images should represent an enhanced spatial resolution and should preserve the spectral information simultaneously. In the two last decades, many pansharpening algorithms have been implemented in the literature such as IHS, PCA, HPF, etc. Therefore, in comparison with the various conventional methods, our contribution is the conception of a new fusion scheme by combining two different approaches: the Principal Component Analysis (PCA) and the NonSubsampled Contourlet Transform (NSCT). The hypothesis in this combination represent the use of PCA, in first, like statistical approach to obtain from the MS bands the main information, followed by the NSCT as a robust multiresolution and multidirectional approach, to give an optimal representation of the characteristics in the image compared to the classical methods (wavelets), in order to overcome the drawback caused by PCA with the spectral distortion. The focus of this study is to show a new way to combine differently from usual those two approaches, to find a compromise between enhancing the spatial resolution and preserving the spectral information at the same time. The quality of the resulted images has been evaluated by the visual interpretation and the statistical assessment to prove its efficiency compared to other conventional methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.