Abstract

Pancreas oxygenation during cold storage has been established in islet isolation and transplantation to prevent ischemic tissue damage using perfluorodecalin (PFD) as hyperoxygen carrier. However, studies in humans and pigs provided conflicting results about the efficiency of PFD for pancreas oxygenation. The aim of this study was to compare PFD with a newly developed oxygen carrier composed of perfluorohexyloctane and polydimethylsiloxane 5 (F6H8S5) for long-term storage of human pancreata. After 24-hr storage in preoxygenated PFD or F6H8S5, pancreata were processed using Liberase HI for pancreas dissociation and a Ficoll gradient for islet purification. Islet quality assessment was performed measuring glucose-stimulated insulin release, viability, islet ATP content, and posttransplant function in diabetic nude mice. Compared with PFD, F6H8S5 significantly increased the intrapancreatic partial oxygen pressure and islet ATP content. This corresponded to an increase of islet yield, recovery after culture, glucose stimulation index, viability, and improved graft function in diabetic nude mice. The present findings indicate clearly that F6H8S5 improves isolation outcome after prolonged ischemia compared with PFD. This observation seems to be related to the significant lipophilicity and almost pancreas-specific density of F6H8S5. Moreover, these characteristics facilitate pancreas shipment without using custom-made transport vessels as required for PFD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.