Abstract
Most of the traditional classification methods behave undesirable, particularly producing poor predictive accuracy for the minority class of the imbalanced data from real world applications. This paper proposes a novel over-sampling strategy to handle imbalanced data based on cluster ensembles, named CE-SMOTE, which aims to provide a better training platform by introducing clustering consistency index to find out the cluster boundary minority samples and then over-sampling these minority samples to augment the original data set. Experiments carried out on some imbalanced public data sets show that the proposed method is effective and feasible to deal with the imbalanced data sets, and can produce high predictions for both minority and majority classes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.