Abstract

AbstractBoundary conditions come from Nature. Therefore these conditions exist at natural boundaries. Often, owing to limitations in computing power and means, large domains are truncated and confined between artificial synthetic boundaries. Then the required boundary conditions there cannot be provided naturally and there is a need to fabricate them by intuition, experience, asymptotic behaviour and numerical experimentation. In this work several kinds of outflow boundary conditions, including essential, natural and free boundar conditions, are evaluated for two flow and heat transfer model problems. A new outflow boundary condition, called hereafter the free boundary condition, is introduced and tested. This free boundary condition is equivalent to extending the validity of the weak form of the governing equations to the synthetic outflow instead of replacing them there with unknown essential or natural boundary conditions. In the limit of zero Reynolds number the free boundary condition minimizes the energy functional among all possible choices of outflow boundary conditions. A review of results from applications of the same boundary conditions to several other flow situations is also presented and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call