Abstract

This paper describes the development and performance of the first fructose biosensor based on a commercial screen-printed graphene electrode (SPGE). The electrode was modified with an osmium-polymer, which allowed the efficient wiring of the enzyme fructose dehydrogenase (FDH). The immobilization of both osmium-polymer and FDH was realized in an easy way. Aliquots of 10μL Os-polymer and 10μL FDH were thoroughly mixed with poly(ethylene glycol) (400) diglycidyl ether (PEDGE) and deposited on the electrode surface and left there to dry overnight. The biosensor exhibits a detection limit of 0.8μM, a linear range between 0.1 and 8mM, high sensitivity to fructose (2.15μAcm−2/mM), good reproducibility (RSD=1.9%), fast response time (3s) and a stability of 2 months when stored in the freezer.The proposed fructose biosensor was tested in real food samples and validated with a commercial spectrophotometric enzymatic kit. No significant interference was observed with the proposed biosensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.