Abstract

Euler's elastica model has a wide range of applications in Image Processing and Computer Vision. However, the non-convexity, the non-smoothness and the nonlinearity of the associated energy functional make its minimization a challenging task, further complicated by the presence of high order derivatives in the model. In this article we propose a new operator-splitting algorithm to minimize the Euler elastica functional. This algorithm is obtained by applying an operator-splitting based time discretization scheme to an initial value problem (dynamical flow) associated with the optimality system (a system of multivalued equations). The sub-problems associated with the three fractional steps of the splitting scheme have either closed form solutions or can be handled by fast dedicated solvers. Compared with earlier approaches relying on ADMM (Alternating Direction Method of Multipliers), the new method has, essentially, only the time discretization step as free parameter to choose, resulting in a very robust and stable algorithm. The simplicity of the sub-problems and its modularity make this algorithm quite efficient. Applications to the numerical solution of smoothing test problems demonstrate the efficiency and robustness of the proposed methodology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.