Abstract
This manuscript is devoted to present an efficient numerical method for finding numerical solution of Volterra-Fredholm integro-differential equations of fractional-order. The technique is based on the M{u}ntz-Legendre polynomials and Petrov-Galerkin method. A new Riemann-Liouville operational matrix for M{u}ntz-Legendre polynomials is proposed using Laplace transform. Employing this operational matrix and Petrov-Galerkin method, the problem transforms to a system of algebraic equations. Next, we solve this system by applying any iterative method. An estimation of the error is proposed. The efficiency and accuracy of the present scheme is illustrated using several examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.