Abstract

In this article, we generalize the Legendre wavelets operational matrix of derivatives to fractional order derivatives in the Caputo sense. Legendre wavelets and their properties are employed for deriving Legendre wavelets operational matrix of fractional derivatives and a general procedure for forming this matrix is introduced. Then truncated Legendre wavelets expansions together with these matrices are used for numerical solution of Bagley–Torvik fractional order boundary value problems. Several examples are included to demonstrate accuracy and applicability of the proposed method. Key words: Shifted Legendre polynomials, Legendre wavelets, Caputo derivative, fractional order boundary value problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.